NVIDIA Hopper H100 GPU Pictured In All Its Glory: The World’s Fastest 4nm GPU & World’s First With HBM3 Memory – Wccftech

At GTC 2022, NVIDIA unveiled its Hopper H100 GPU, a compute powerhouse designed for the next generation of data centers. It’s been a while since we talked about this mighty chip but it looks like NVIDIA gave a close-up of its flagship chip to select media.

NVIDIA Hopper H100 GPU: First With 4nm and HBM3 Technology Gets High-Res Pictures

CNET managed to get hold of not only the graphics board on which the H100 GPU is fused but also the H100 chip itself. The H100 GPU is a monster chip that comes packed with the latest 4nm tech and incorporates 80 Billion transistors along with the bleeding-edge HBM3 memory technology. As per the tech outlet, the H100 is built upon the PG520 PCB board which has over 30 power VRMs & a massive integral interposer that uses TSMC’s CoWoS tech to combine the Hopper H100 GPU with a 6-stack HBM3 design.

Next-Gen NVIDIA GeForce RTX 4090 With Top AD102 GPU Could Be The First Gaming Graphics Card To Break Past 100 TFLOPs

NVIDIA Hopper H100 GPU Pictured (Image Credits: CNET):

Out of the six stacks, two stacks are kept to ensure yield integrity. But the new HBM3 standard allows for up to 80 GB capacities at 3 TB/s speeds which are crazy. For comparison, the current fastest gaming graphics card, the RTX 3090 Ti, offers just 1 TB/s of bandwidth and 24 GB VRAM capacities. Other than that, the H100 Hopper GPU also packs in the latest FP8 data format, and through its new SXM connection, it helps accommodate the 700W power design that the chip is designed around.

NVIDIA Hopper H100 GPU Specifications At A Glance

So coming to the specifications, the NVIDIA Hopper GH100 GPU is composed of a massive 144 SM (Streaming Multiprocessor) chip layout which is featured in a total of 8 GPCs. These GPCs rock total of 9 TPCs which are further composed of 2 SM units each. This gives us 18 SMs per GPC and 144 on the complete 8 GPC configuration. Each SM is composed of up to 128 FP32 units which should give us a total of 18,432 CUDA cores. Following are some of the configurations you can expect from the H100 chip:

The full implementation of the GH100 GPU includes the following units:

Intel CEO Pat Gelsinger anticipates the end of the chip shortages by 2024

  • 8 GPCs, 72 TPCs (9 TPCs/GPC), 2 SMs/TPC, 144 SMs per full GPU
  • 128 FP32 CUDA Cores per SM, 18432 FP32 CUDA Cores per full GPU
  • 4 Fourth-Generation Tensor Cores per SM, 576 per full GPU
  • 6 HBM3 or HBM2e stacks, 12 512-bit Memory Controllers
  • 60 MB L2 Cache
  • Fourth-Generation NVLink and PCIe Gen 5

The NVIDIA H100 GPU with SXM5 board form-factor includes the following units:

  • 8 GPCs, 66 TPCs, 2 SMs/TPC, 132 SMs per GPU
  • 128 FP32 CUDA Cores per SM, 16896 FP32 CUDA Cores per GPU
  • 4 Fourth-generation Tensor Cores per SM, 528 per GPU
  • 80 GB HBM3, 5 HBM3 stacks, 10 512-bit Memory Controllers
  • 50 MB L2 Cache
  • Fourth-Generation NVLink and PCIe Gen 5

This is a 2.25x increase over the full GA100 GPU configuration. NVIDIA is also leveraging from more FP64, FP16 & Tensor cores within its Hopper GPU which would drive up performance immensely. And that’s going to be a necessity to rival Intel’s Ponte Vecchio which is also expected to feature 1:1 FP64.

The cache is another space where NVIDIA has given much attention, upping it to 48 MB in the Hopper GH100 GPU. This is a 20% increase over the 50 MB cache featured on the Ampere GA100 GPU and 3x the size of AMD’s flagship Aldebaran MCM GPU, the MI250X.

Rounding up the performance figures, NVIDIA’s GH100 Hopper GPU will offer 4000 TFLOPs of FP8, 2000 TFLOPs of FP16, 1000 TFLOPs of TF32 and 60 TFLOPs of FP64 Compute performance. These record-shattering figures decimate all other HPC accelerators that came before it. For comparison, this is 3.3x faster than NVIDIA’s own A100 GPU and 28% faster than AMD’s Instinct MI250X in the FP64 compute. In FP16 compute, the H100 GPU is 3x faster than A100 and 5.2x faster than MI250X which is literally bonkers.

The PCIe variant which is a cut-down model was recently listed over in Japan for over $30,000 US so one can imagine that the SXM variant with a beefier configuration will easily cost around $50 grand.

NVIDIA Ampere GA100 GPU Based Tesla A100 Specs:

NVIDIA Tesla Graphics CardNVIDIA H100 (SMX5)NVIDIA H100 (PCIe)NVIDIA A100 (SXM4)NVIDIA A100 (PCIe4)Tesla V100S (PCIe)Tesla V100 (SXM2)Tesla P100 (SXM2)Tesla P100
(PCI-Express)
Tesla M40
(PCI-Express)
Tesla K40
(PCI-Express)
GPUGH100 (Hopper)GH100 (Hopper)GA100 (Ampere)GA100 (Ampere)GV100 (Volta)GV100 (Volta)GP100 (Pascal)GP100 (Pascal)GM200 (Maxwell)GK110 (Kepler)
Process Node4nm4nm7nm7nm12nm12nm16nm16nm28nm28nm
Transistors80 Billion80 Billion54.2 Billion54.2 Billion21.1 Billion21.1 Billion15.3 Billion15.3 Billion8 Billion7.1 Billion
GPU Die Size814mm2814mm2826mm2826mm2815mm2815mm2610 mm2610 mm2601 mm2551 mm2
SMs132114108108808056562415
TPCs66575454404028282415
FP32 CUDA Cores Per SM128128646464646464128192
FP64 CUDA Cores / SM128128323232323232464
FP32 CUDA Cores168961459269126912512051203584358430722880
FP64 CUDA Cores168961459234563456256025601792179296960
Tensor Cores528456432432640640N/AN/AN/AN/A
Texture Units528456432432320320224224192240
Boost ClockTBDTBD1410 MHz1410 MHz1601 MHz1530 MHz1480 MHz1329MHz1114 MHz875 MHz
TOPs (DNN/AI)2000 TOPs
4000 TOPs
1600 TOPs
3200 TOPs
1248 TOPs
2496 TOPs with Sparsity
1248 TOPs
2496 TOPs with Sparsity
130 TOPs125 TOPsN/AN/AN/AN/A
FP16 Compute2000 TFLOPs1600 TFLOPs312 TFLOPs
624 TFLOPs with Sparsity
312 TFLOPs
624 TFLOPs with Sparsity
32.8 TFLOPs30.4 TFLOPs21.2 TFLOPs18.7 TFLOPsN/AN/A
FP32 Compute1000 TFLOPs800 TFLOPs156 TFLOPs
(19.5 TFLOPs standard)
156 TFLOPs
(19.5 TFLOPs standard)
16.4 TFLOPs15.7 TFLOPs10.6 TFLOPs10.0 TFLOPs6.8 TFLOPs5.04 TFLOPs
FP64 Compute60 TFLOPs48 TFLOPs19.5 TFLOPs
(9.7 TFLOPs standard)
19.5 TFLOPs
(9.7 TFLOPs standard)
8.2 TFLOPs7.80 TFLOPs5.30 TFLOPs4.7 TFLOPs0.2 TFLOPs1.68 TFLOPs
Memory Interface5120-bit HBM35120-bit HBM2e6144-bit HBM2e6144-bit HBM2e4096-bit HBM24096-bit HBM24096-bit HBM24096-bit HBM2384-bit GDDR5384-bit GDDR5
Memory SizeUp To 80 GB HBM3 @ 3.0 GbpsUp To 80 GB HBM2e @ 2.0 GbpsUp To 40 GB HBM2 @ 1.6 TB/s
Up To 80 GB HBM2 @ 1.6 TB/s
Up To 40 GB HBM2 @ 1.6 TB/s
Up To 80 GB HBM2 @ 2.0 TB/s
16 GB HBM2 @ 1134 GB/s16 GB HBM2 @ 900 GB/s16 GB HBM2 @ 732 GB/s16 GB HBM2 @ 732 GB/s
12 GB HBM2 @ 549 GB/s
24 GB GDDR5 @ 288 GB/s12 GB GDDR5 @ 288 GB/s
L2 Cache Size51200 KB51200 KB40960 KB40960 KB6144 KB6144 KB4096 KB4096 KB3072 KB1536 KB
TDP700W350W400W250W250W300W300W250W250W235W

Products mentioned in this post

rtx 3090

rtx 3090
USD 2598

The links above are affiliate links. As an Amazon Associate, Wccftech.com may earn from qualifying purchases.